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Solving Multiphoton Jaynes—Cummings Model
with Field Nonlinearity by Supersymmetric
Unitary Transformation

Tong-Qiang Song+* and Hong-Yi Fan>?
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We introduce a supersymmetric unitary transformation, to diagonalize the multiphoton
Jaynes—Cummings model Hamiltonian based on supersymmetric quantum mechanics
theory, that includes any forms of intensity-dependent coupling and field nonlinearity.
On doing so, we obtain its eigenvalue and eigenstates, and the time evolution of state
vector.
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The interaction of a single two-level atom with the quantized electromagnetic
field of a lossless higl® cavity is a central problem in cavity quantum electro-
dynamics. The simplest physical situation can be described by the well-known
Jaynes—Cummings model (Jaynes and Cummings, 1963). Many interesting non-
classical effects, such as collapses and revivals of atomic inversion, squeezing of
radiation field, etc., have been predicted theoretically and observed experimentally
in this model (Meystre, 1992; Raitet al,, 1994). Recently, Fan Hongyi proposed
that Jaynes—Cummings model can be solved by supersymmetric unitary transfor-
mation (Hongyi, 1997). It is no doubt that this new opinion will further enrich the
contents of supersymmetric quantum mechanics. In this paper, we will further use
the method to study the multiphoton Jaynes—Cummings models that include any
forms of intensity-dependent coupling and field nonlinearity.
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We consider the following Hamiltonian (rotating wave approximation)
1
H = N + Swoo; + R(N) 4+ gla™ f (N)o_ + f(N)a o], (1)

wherew is the frequency of the single-mode quantized fialdnda* are annihi-
lation and creation operators of the field, respectivelyis the atomic transition
frequency;k can be any nonnegative integét;and f are Hermitian operators
and they are any reasonable functions of the photon number opératoa™ a;
R(N) is field nonlinearity item; andf(N) denotes intensity-dependent atom—field
coupling. This model is a fairly general form for single-mode Jaynes—Cummings
model. For instance, iIR(X) = 0,k = 1, and f (x) = 1/(x + 1), it reduces to the
generalized Jaynes—Cummings model (Fan and Fan, 1994R Asat’a? =
N(N — 1),k =1, and f(x) =1, it becomes the Kerr-type micromaser model
(Deb and Ray, 1993). It reduces to the Buck—Sukumar mode{@s= 0, k = 1,
and f (x) = /x + 1 (Buck and Sukumar, 1980). If letting(x) = 0, k = 1, and
f(x) = VIx + 1/x + 1), ([X] = (1 — g*)/(1 — q)), we recover the-deformed
Jaynes—Cummings models (Crnugalpl, 1994).

To construct the supersymmetric unitary transformation operator, we first
define the supersymmetric transformation generators as follows:

Q =a"™f(N)o_, (2a)
Q* = f(N)ako,, (2b)
N = fZ(N)(Nl:IL!k)!a+++ F2(N —k)ﬁa__, (2¢)
where
1 1
Oy 4 =0,0_ = §(1+ 02), O__=0_0y = 5(1 — 07). 3)

Itis easy toseethalN’, Q*, Q)form supersymmetric generators and have super-
symmetric Lie algebra properties, i.e.

Q?=Q" =0, [Q", Ql=No; (Q, oz} ={Q", oz} =0,
N, = {Q1 Q+}l [N/! Q] = [N/! Q+] = 0! (Q+ - Q)Z = —N/, (4)

in which { } denotes the anticommutation bracket. With the help of Eq. (2), Eq. (1)
can be written as

1 1
H=Mao-— Ekw + 5 A0z + R(M —ko,4) + g(Q" + Q), (5)

where

M = N+k(7++, A:a)o—kw (6)
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It can be proved thaM is constant of motion and commutes witi, Q, and
QT,i.e.

M, N'] =[M, Q] =M, Q] =0, (7)
Using the property2, = o, we have
= RO
RM —kop) = Y C M — ko)
1=0 )
© R0
= Z RI—'(O) [M' +IM' Y (=K)o
1=0
+ ¢ ;I 1)M|_2( 1Yoy + :|
> RO
= Z #[MI +(M—Kloy —Moy,]

= R(M) +[R(M — k) — R(M)]o. = Ry(M) + Ro(M)oz, (8)

where
Ru(M) = STR(M) + R(M K] (©)
Ro(M) = S[R(M —K) — ROW)]. (10

With the help of Egs. (8)—(10), Eqg. (5) can be rewritten as

H = Ho+ A(M)o; + 9(Q" + Q). (11)

where
Ho = Mw — %ka) + Ry(M), (12)
AMM) = Ro(M) + 2 2. (13)

We have now put the general model into the form appropriate for using super-
symmetric unitary transformation. By the aid of supersymmetric transformation
generators defined above, we construct the supersymmetric unitary transformation
operator so that the Hamiltonian in Eq. (11) can be diagonalized. The supersym-
metric unitary transformation operator is defined as

T — e -GNHQT - Q) (14)
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wheref is function of operatorM to be determined later, ard~z is defined as

(N +k)'

v =[] a+++[2(N e

With the help of the operator formulaf(N) = f(N +1)a,atf(N +1) =
f(N)at, and Eq. (7), one can easily verify the following commutation relations

[N~2,Q] =[Nz, Q] =[Nz, M] =0, (16)
[0,Q1 =0, Q"] =[N"2,0]=0. 17)
Therefore, Eq. (14) can be expanded to the following form:
T= cos(%) - sm<2> N'~2(Q* — Q). (18)
From Egs. (7), (16), and (17), we have
T 1HoT = Ho, (29)
THQ+ QH)T = cosp)(Q + QF) + sin@)v/N'oy, (20)
T-20,T = cosp)o, — sin@)N'~2(Q + Q). (21)
Therefore,
H = T *HT = Ho + gcosf)(Q + Q") + gsin@)v'N'o,
+ A(M)[ cosg)o; — sin@)N'"2(Q + Q™)]. (22)
If we let
tg(0) = iﬂ_) (23)
we can obtain the diagonalized Hamiltonian as follows
H = THT = Ho +/AXM) + N'g?o; (24)

It should be pointed out that Eg. (23) should be understood in the sense of eigen-
values and eigenvalue equations for the operdtbmnd N’. The corresponding
eigenstates ofl’ read

|\IJ5_> = |n! +>i |\Ijé) = |n+k1 _)l (25)

and the eigenequations bif’ are given by

H'|w)) = |:<n+ g)a)+ Rl(n+k)+\/A2(n+ k) + f2(n)( k)l } W),

(26)
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H'|w3) = [(n + ;) o+ Ri(n+k) — \/AZ(n + k) + f2(n)( k)' } W),
@7)
where
A(n+k) = :—LA + Ry(n + k) = —[A + R(n) — R(n + K)]. (28)

Thus the eigenvalues and eigenstates of the Hamiltohiaare, respectively,
given by

E. = Eo(n) = Ex(n), (29)
|W1) = T|¥;) = c03(9> |¥1) + sm( ) [¥3), (30)
|Wo) = T|Wp) = cos(9> |W5) — S|n(9> W3, (31)
where
Eo(n) = (n + g) ® + Ri(n + k), (32)

(n+k)

Ex(n) = \/ A2(n + k) + f2(n)——~ (33)

oy _ 1 A(n+Kk)
COS(E)_ﬁ ,1+7E1(n) , (34)
(0N _ 1 [0 Ah+Kk)
sm(i)_\/E 1 7E1(n) . (35)

It should be pointed out that the states —) and g < k — 1), which are not
included in Egs. (30) and (31), are also the eigenstatés. of

Now, we use the eigenstatestdfto express the time evolution of wave func-
tion from arbitrary initial conditions. Denote 4y (0)) an arbitrary initial condi-
tion of the system. We can expand the initial state vejsigD)) in the following
form:

00 k—1
[W(0) = ) [CHO)In, +) +C, (O)In+k )]+ D Da(O)n, —),  (36)
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where C£(0) and D,(0) are complex coefficients satisfying the normalization
condition. The wave function at tintds then given by

|W(t)) = exp(=iHt)|¥(0))

= T expiH')T™ Y [CH(O)N, +) + C, (0)In + k, —)]
n=0

k=1
+_ Da(®)in, -), (37)
n=0
where
Dn(t) = exp{—i |:na> + R(n) — %wo] t}Dn(O). (38)

From Egs. (24) and (25)—(27), we obtain

00 k—1
[W(0) = Y [CIMIn, +) + Cr@®In+k =)+ Y Da®)In, —),  (39)
n=0

n=0
where
Cq (1) = [An()Cy (0) + Bn(t)Cy (0)] exp[—i Eo(n)t], (40)
Cy, (t) = [Ba(t)Cy (0) + AL(t)Cy (0)] expl—i Eo(n)t], (41)
_ iA(N+K) .
An(t) = cosEx(n)t] — O sin[E1()t], (42)
.gf(n) /(n+Kk)! .
Bn(t) = —i () = sin[Ez(n)t]. (43)

In short, the main result of this paper is the construction of a supersym-
metric unitary transformation to diagonalize the Hamiltonian of the multiphoton
Jaynes—Cummings model that include any forms of intensity-dependent coupling
and field nonlinearity. This method, allowing a unified treatment of different in-
teraction models, seems to be particularly promising because of the possibility
to single out worth-noting physical features explicitly related to specific forms
of the atom—cavity mode coupling. Moreover, we have obtained the eigenvalue,
eigenstates, and time evolution of the state vector of the system. These general
results immediately give the solution to any specific forms of intensity-dependent
coupling and field nonlinearity, and will facilitate the subsequent investigations of
the nonlinear dynamical and statistical properties of the system.
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